Free Objective Test 01 Practice Test - 11th and 12th
Question 1
If y = tan−1√(1+sinx1−sinx),π2<x<π, then dydx equals
SOLUTION
Solution : A
y=tan−1 ⎷(1−cos(π2+x)1+cos(π2+x))=tan−1∣∣tan(π4+x2)∣∣⋯)(i)
Now, π2<x<π
∴ π4<x2<π2
or π2<π4+x2<3π4
∴ ∣∣tan(π4+x2)∣∣=−tan(π4+x2) (∴ in second quadrant)
=tan{π−(π4+x2)}
From Eq.(i),
y=tan−1tan{π−(π4+x2)}
=π−(π4+x2)
=3π4−x2
(∵principal value of tan−1 x in−π2 to π2)
∴ dydx=−12
Question 2
If f(x) = |x|, then f’(x), where x ≠ 0 is equal to
SOLUTION
Solution : D
∵f(x)={x,x≥0−x,x<0∵f′(x)=⎧⎨⎩1,x>0,i.e,|x|x,x>0−1,x>0,i.e,|x|x,x>0=|x|x,x≠0
Question 3
If √(1−x2n)+√(1−y2n)=a(xn−yn), then √(1−x2n1−y2n)dydx is equal to
SOLUTION
Solution : A
Put xn=sin θ and yn=sin ϕthen, (cosθ+cosϕ)=a(sinθ−sinϕ)⇒2 cos(θ+ϕ2)cos(θ−ϕ2)=2a cos(θ+ϕ2)sin(θ−ϕ2)⇒cot(θ−ϕ2)=a⇒(θ−ϕ2)=cot−1a⇒θ−ϕ=2cot−1aor sin−1xn−sin−1yn=2 cot−1aDifferentiating both sides,we havenxn−1√(1−x2n)−nyn−1√(1−y2n)dydx=0∴ √(1−x2n1−y2n)dydx=xn−1yn−1
Question 4
If d2xdy2(dydx)3+d2ydx2=k, then k is equal to
SOLUTION
Solution : A
dydx=(dxdy)−1⇒d2ydx2=−(dxdy)−2{ddx(dxdy)}⇒d2ydx2=−(dxdy)−2{ddy(dxdy)dydx}⇒d2ydx2=−(dydx)2{d2xdy2.dydx}⇒d2ydx2=−(dydx)3d2xdy2⇒d2ydx2+(dydx)3d2xdy2=0
Question 5
If y=(1+x)(1+x2)(1+x4)⋯(1+x2n) then dydx at x = 0 is
SOLUTION
Solution : C
Since, y=(1+x)(1+x2)(1+x4)⋯(1+x2n),(1−x)y=(1−x2)(1+x2)(1+x4)⋯(1+x2n)=(1−x4)(1+x4)⋯(1+x2n+1)∴y=1−x2n+1(1−x)∵dydx=(1−x)(−2n+1.x2n)−(1−x2n+1)(−1)(1−x)2∴dydx∣∣x=0=(1)(0)−(1)(−1)(1)2=1
Question 6
The derivative of sin−1(2x1+x2) with respect to tan−1(2x1−x2) is
SOLUTION
Solution : B
Let u=sin−1(2x1+x2)=2 tan−1x
∴dudx=21+x2
and v=tan−1(2x1+x2)=2 tan−1x
∴dvdx=21+x2
∴dudv=(dudx)(dvdx)=1
Question 7
Let f(x)=loge{u(x)v(x)},u′(2)=4,v′(2)=2,u(2)=2,v(2)=1, then f′(2) is equal to
SOLUTION
Solution : A
f(x)=loge{u(x)v(x)}
=loge u(x)−logev(x)
∴f′(x)=u′(x)u(x)−v′(x)v(x)
f′(2)=u′(2)u(2)−v′(2)v(2)
=42−21
=2−2=0
Question 8
If sin y = x sin (a + y) and dydx=A1+x2−2xcos a′, then the value of A is
SOLUTION
Solution : C
x=sin ysin(a+y).....(i)
⇒dxdy=sin(a)sin2(a+y)
∴dydx=sin2(a+y)sin(a)=A1+x2−2x cos a
Put x=0,y=0,
then A=sin a
Question 9
If √(x+y)+√(y−x)=a,then d2ydx2 equals
SOLUTION
Solution : C
Given,
√(x+y)+√(y−x)=a..........(i)
∴√x+y−√y−x=2xa.......(ii)
Adding Eqs.(i) and (ii), then
2√x+y=a+2xa
Squaring,4x+4y=a2+4x2a2+4x
∴4+4dydx=0+8xa2+4
∴0+4d2ydx2=8a2
∴d2ydx2=2a2
Question 10
If sin (x+y)=loge(x+y),thendydx is equal to
SOLUTION
Solution : D
∵sin(x+y)=loge(x+y),
cos(x+y)(1+dydx)=1(x+y)(1+dydx)
⇒(1+dydx)(cos(x+y)−1x+y)=0
∵cos(x+y)−1(x+y)≠ 0
∴1+dydx=0
∴dydx=−1
Question 11
If xcos y+ycos x=5. Then
SOLUTION
Solution : C
xcos y+ycos x=5
⇒ecos y logex+ecos x logey=5
∴ecos y loge x{cosyx−loge x(sin y)dydx}+ecosx logey{cos xydydx−sin x logey}=0
Putx=y=1, (cos 1−0)+(cos 1dydx−0)=0
∴dydx=−1
or y′=−1
Question 12
If √(1−x6)+√(1−y6)=a(x3−y3) and dydx=f(x,y)√(1−y61−x6),then
SOLUTION
Solution : D
Put x3=sin θ,y3=sin ϕ,
then cosθ+cosϕ=a(sin θ−sinϕ)
⇒2 cos(θ+ϕ2) cos(θ−ϕ2) =2a cos (θ+ϕ2) sin (θ−ϕ2)
⇒cot(θ−ϕ2) = a
⇒(θ−ϕ2)=cot−1a
⇒sin−1x3−sin−1y3=2 cot−1 a
∴3x2√(1−x6)−3y2√(1−y6)dydx=0
⇒dydx=x2y2√(1−y61−x6)
∴f(x,y)=x2y2
Question 13
If x = a cos θ,y=b sin θ,then d3ydx3 is equal to
SOLUTION
Solution : C
∵x=acosθ⇒dxdθ=−a sin θ and y=b sin θ ⇒dydθ=b cos θ∴dydx=−ba cot θ⇒d2ydx2=ba cosec2θ dθdx=−ba2cosec3θ∴d3ydx3=3ba2 cosec2θ(−cosec θ cot θ)dθdx=3ba2 cosec3θ cot θ (−1a sin θ)=−3ba3 cosec4θ cot θ
Question 14
If y=√x+√y+√x+√y+....∞, then dydx is equal to
SOLUTION
Solution : B
∴y=√x+√y+y
⇒(y2−x)=√2y
or (y2−x)2=2y
Differentiating both sides w.r.t. x, then
2(y2−x)(2ydydx−1)=2dydx
∴dydx=(y2−x)2y3−2xy−1
Question 15
The derivative of cos−1(x−1−xx−1+x) at x=−1 is
SOLUTION
Solution : D
We have, y=cos−1(x−1−xx−1+x)⇒y=cos−1(1−x21+x2)
Now, Put x=tanθ
We get y=cos−1(1−tan2θ1+tan2θ)⇒y=cos−1(cos2θ)⇒y=2θ⇒y=2tan−1x∴dydx=21+x2∴dydx|x=−1=21+(−1)2=2