Free Objective Test 02 Practice Test - 11th and 12th 

Question 1

Find the minimum and maximum value of the function y=x33x2+6. Find the values of y at which it occurs.

A.

Maxima at x = 0, Maximum value = 6 

B.

Maxima at x = 2, Maximum value = 2 

C.

Minima at x=0,minimum value = 6

D.

Minima at x=2,minimum value = 6

SOLUTION

Solution : A and D

Given y=x33x2+6
Differentiating y w.r.t. 'x', dydx=3x26x
Putting dydx=0, we will get the values at which function is maximum or minimum
 3x26x=0x(3x6)=0
x=0,+2
To distinguish values of x as the point of maximum or minimum, we need 2nd derivative of the function.
d2ydx2=6x6; Now(d2ydx2)x=0=6<0
At x=0It is maximum(d2ydx2)x=2=6(2)6=6>0At x=2It is minimum
Hence x=0 is a point of maximum and x = 2 is a point of minimumSo, maximum value of y = 033.0+6=6minimum value of y=(2)33(2)2+6=2

Question 2

If y=e4x sin2x, then dydx=?

A.

e4xcos2x

B.

4e4xsin2x

C.

2e4x[cos2x+2sin2x]

D.

none of these

SOLUTION

Solution : C

Here u=e4x  v=sin2x, Differentiating both sides w.r.t. 'x'
dydx=ddx[e4x sin2x]
=e4xddx[sin 2x]+sin 2xddx[e4x](Using product rule)
=2e4xcos2x+sin2x 4e4x=2e4x[cos2x+2sin2x]

Question 3

Find the derivative of y=sin(x24)

A.

2xcos(x24)

B.

2xcosx2

C.

xcos(x24)

D.

none of these

SOLUTION

Solution : A

We now know how to differentiate sin x and x24, but how do we differentiate a composite like sin(x24)? the answer is, with the Chain Rule, which says that the derivatives of the composite of two differentiable fuctions is the product of their derivatives evaluated at appropriate points. The Chain Rule is probably the most used differentiation rule in mathematics.

Let u=x24
Then y=sin u
We know the differentiation of u w.r.t x and differentiation of y w.r.t u.
dudx=2x  &  dydu=cos u we can write dydx=dydu.dudx
dydx=(cos u).(2x)=2x.cos(x24)

Question 4

if f(x)=x cos x, find f"(x), or d2ydx2

A.

- xsinx + cosx

B.

-  xcosx - 2sinx   

C.

xsinx - cosx

D.

none of these

SOLUTION

Solution : B

Using the Product Rule, we have f'(x)=xddx(cos x)+cos xddx(x)=-xsinx+cosx
To find f"(x) we differentiate f'(x):
f"(x)=ddx(-x sin x+cos x)=-xddx(sin x)+sin x ddx(-x)+ddx(cos x)
=-x cos x-sin x-sin x = -x cos x-2 sin x

Question 5

If y=ex  find dydx

A.

ex

B.

ex

C.

xex1

D.

none of these

SOLUTION

Solution : A

dexdx=ex
dydx for some common functions
ydydxydydxxnnxn1sec xsec x  tan xsin xcos xcosec xcosec x  cot xcos xsin xln x1xtan xsec2xexexcot xcosec2x

Question 6

Find dydx if y=ex sinx

A.

excosx

B.

ex+cosx

C.

ex(cosx+sinx)

D.

none of these

SOLUTION

Solution : C

y=ex sinx.
So dydx=ddx(ex sinx)=exddx(sin x)+sin xddx(ex)
=ex cosx+ex sinx=ex(cos x+sin x).

Question 7

Can I differentiate any other function to get 3x2?

A.

yes

B.

No

SOLUTION

Solution : A

Yes

Question 8

If y=x lnx, then dydx=?

A.

1 + lnx

B.

lnx          

C.

1

D.

none of these

SOLUTION

Solution : A

Here u=x, v=ln x
Differentiating both sides w.r.t. 'x', dydx=d[xlnx]dx
Using product rule = xd( ln x)dx+ln xd(x)dx=x1x+lnx.1=1+lnx

Question 9

The electric current in a charging R-C circuit is given by i=ioetRC where io, R and C are constant parameter of the circuit and t is time. Find the rate of change of current at (x)t=0, (y)t=RC, (z)t=10 RC

(i)ioRC     (ii)0     (iii)ioRCe     (iv)ioRC10e     (v)ioe10RC

A.

x-(i); y-(iii); z-(iv)

B.

x - (ii) ;  y - (i) ; z - (v)

C.

x - (iii) ;  y - (ii) ; z - (iv)

D.

x - (i) ;  y - (iii) ; z - (ii)

SOLUTION

Solution : A

i=i0etRC
i0 R,Care constants
To find the rate of change of i
i.e.,
didt
didt=ioRCetRC
(x) at t=0
didt=ioRC

(y) at t =RC
didt=ioRCe1=ioRCe
(z) at t = 10RC
didt=ioRCe10RcRC=ioRce10

Question 10

Figure shows the curve y=x2.Find the area of the shaded part between x=0 and x=6

A.

216 unit2

B.

72 unit2

C.

12 unit2

D.

None of these

SOLUTION

Solution : B

The area can be divided into strips by drawing ordinates between x = 0 and x = 6 at a regular interval of dx. Consider the strip between the ordinates at x and x + dx. The height of this strip is y=x2. The area of this strip is dA = y dx = x2dx.

The total area of the shaded part is obtained by summing up these strip-areas with x varying from 0 to 6. Thus 

A=60x2 dx

=[x33]60=21603=72

Question 11

Find the area bounded by the curve y=ex, the X-axis and the Y-axis

A.

34 unit2

B.

12 unit2

C.

1 unit2

D.

None of these

SOLUTION

Solution : C


The required area is
0exdx
= ex|0

= 1e[1e]

= -0 + 1

= 1

Question 12

100sec2(3x+6)dx

A.

13tan(36o)

B.

13tan(6o)

C.

13tan(30o)

D.

None of these

SOLUTION

Solution : D

I=100sec2(3x+6)dx

Let 3x+6=u

3dx=dudx=du3

I=sec2udu3

=13tan(u)+c
I=13tan(3x+6)100
13[tan36tan6]

Question 13

Find the integral of the given function w.r.t x

y=cos(8x+6)+cosec2(7x+5)+6sec x tan x

A.

sin(8x+6)8+cot(7x+5)7+6sec x tan x

B.

sin(8x)cot(7x)+6sec x+c

C.

sin(8x+6)8cot(7x+5)7+6sec x + c

D.

sin(8x+6)cot(7x+5)6sec x+c

SOLUTION

Solution : C

Let u=8x+6,dudx=8dx=du8

t=7x+5,dtdx=7dx=dt7

ydx=cos udu8+cosec2tdt7+6sec x tan x dx

= sin u8+(cot t)7+6sec x+c

= sin(8x+6)8cot(7x+5)7+6secx+c

Question 14

Find the integral of the given function w.r.t - x

y=e2x+1x2

A.

2e2x1x+c

B.

ex21x+c

C.

e2x21x+c

D.

e2x1x+c

SOLUTION

Solution : C

y=e2x+1x2

Integration both side w.r.t. 'x',

I=y.dx=e2x+1x2dx=e2x2+x2+12+1+c[eax=eaxa+c]

I=e2x21x+c

Question 15

Solve the integral I=RGMmx2dx

A.

GMmR

B.

α

C.

GMmR2

D.

- GMm ln(R)

SOLUTION

Solution : A

I=RGMmx2dx=GMmRdxx2=GMm[1x]R

=GMm1R+1=GMmR

This expression represents the gravitational potential energy which is obtained by integrating GMm/x2 between the limits infinity () and radius of the earth (R).