Free Definite Integrals and Areas 02 Practice Test - 12th Grade - Commerce 

Question 1

π20 cos x1+sin xdx=

A.

log 2

B.

log e

C.

12 log 3

D.

0

SOLUTION

Solution : A

put 1+ sin x =t
Then π20cos x1+sin xdx=[log|1+sin x|]π20=log 2

Question 2

If area bounded by the curves y2=4ax and y=mx is a23  then the value of m is

A. 2
B. -2
C.

12

D. None of these

SOLUTION

Solution : A

The two curves y2 = 4ax and y = mx intersect at (4am2,4am) and the area enclosed by the two curves is given by 4am20(4 axmx)dx
4am20(4axmx)dx=a23
83a2m3=a23m3=8m=2

Question 3

π2π2 sin2x dx=

A. π
B.

π2

C. π212
D. π1

SOLUTION

Solution : B

π2π2 sin2x dx=2π20 sin2x dx=2r(32)r(12)2r(2+22)=π2

Question 4

π20 sin2x cos3x dx= [RPET 1984, 2003]

A.

0

B. 215
C. 415
D.

None of these

SOLUTION

Solution : B

Using gamma function,
π20 sin2x cos3x dx=r(32)r22r(72)=215

Question 5

0 log(1+x2)1+x2dx=

A.

π log 12

B. π log 2
C. 2π log 12
D. 2π log 2

SOLUTION

Solution : B

Let I=0 log(1+x2)1+x2dx
Put x=tan θdx=sec2 θ dθ,
I=n20 log (sec θ)2dθ=2n20 log sec θ dθ
=2n20log cos θ dθ =2. π2log12=π log 12=π log 2

Question 6

limπ199+299+399+n99n100= [EAMCET 1994]

A.

9100

B.

1100

C.

199

D.

1101

SOLUTION

Solution : B

limπ199+299+399+n99n100=limπnr=1(r99n100)
=limπ1nnr=1(rn)99=10 x99 dx=[x100100]10=1100

Question 7

limπnr=1 1nern is [AIEEE 2004]

A. e + 1
B. e - 1
C. 1 - e
D. e

SOLUTION

Solution : B

limπnr=1 1nern=10exdx=[ex]10=e1

Question 8

The value of the definite integral 10x dxx3+16 lies in the interval [a, b]. The smallest such interval is.

A. [0,117]
B.

[0,1]

C. [0,127]
D.

None of these

SOLUTION

Solution : A

f(x)=xx3+16f(x)=162x3(x3+16)2f(x)=0x=2Also f′′(2)<0 The function f(x)=xx3+16 is an increasing function in [0,1], so Min f(x) = f(0) = 0 and Max f(x) = f(1) = 117
Therefore by the property m(ba)baf(x)dxM(ba)
(where m and M are the smallest and greatest values of function)
010xx3+16dx117

Question 9

If x0f(t)dt=x+1xt f(t) dt, then the value of f(1) is      [IIT 1998; AMU 2005]

 

A. 12
B.

0

C. 1
D.

12

SOLUTION

Solution : A

x0 dt=x+1xt f(t) dt1xt f(t) dt=xx1t f(t) dt
Differentiating w.r.t x, we get f(x)=1+{0x f(x)}
f(x)=1x f(x)(1+x)f(x)=1f(x)=11+x
f(1)=11+1=12

 

Question 10

Calculate 32f(x)dx where
f(x)={6ifx>13x2ifx1
 

A. 19
B. 21
C. 17
D. 15

SOLUTION

Solution : B


Here, we can see that the integrand f(x) in not continuous in the interval (-2, 3) as it has a discontinuity at x = 1. So we can’t just integrate f(x) and put limits.We’ll have to break this integral into integrals which have limits such that integrands is continuous in those limits.
32f(x)dx=123x2dx+316dx
Now we can integrate these integrands and put limits.
123x2dx+316dx=(x3)|12+(6x)|31=1(8)+186
= 21