Free Determinants 03 Practice Test - 12th Grade - Commerce 

Question 1

A.

B.

C.

D.

SOLUTION

Solution : D

Question 2

The cofactor of the element '4' in the determinant ∣ ∣ ∣ ∣1351234280110211∣ ∣ ∣ ∣ is

A. 4
B. -10
C. 10
D. -4

SOLUTION

Solution : C

The cofactor of element 4, in the 2nd row and 3rd column is
=(1)2+3 ∣ ∣131801021∣ ∣ = - {1(-2)-3(8-0)+1.16}
=10.

Question 3

x + ky  z = 0, 3x  ky z = 0 and x  3y + z = 0 has non-zero solution for k = 

A. -1
B. 0
C. 1
D. 2

SOLUTION

Solution : C

It has a non-zero solution if
∣ ∣1k13k1131∣ ∣ = 0  6k + 6 = 0  k = 1 .

Question 4

The number of values of k for which the system of equations (k+1)x + 8y = 4k, kx + (k+3)y = 3k1 has infinitely many solutions, is

A. 0
B. 1
C. 2
D. Infinite

SOLUTION

Solution : B

For infinitely many solutions, the two equations must be identical
 k+1k = 8k+3 = 4k3k1 (k+1)(k+3) = 8k and 8(3k-1) = 4k(k+3)
 k24k+3 = 0 and k23k+2 = 0 .
By cross multiplication, k28+9 = k32 = 13+4
k2 = 1 and k=1 ; k=1.

Question 5

If Δ(x) = ∣ ∣ ∣xnsin xcos xn!sinnπ2cosnπ2aa2a3∣ ∣ ∣, then the value of dndxn[Δ(x)] at x=0 is

A. -1
B. 0
C. 1
D. Dependent of a

SOLUTION

Solution : B

dndxn[Δ(x)] = ∣ ∣ ∣ ∣dndxnxndndxnsin xdndxncos xn!sin(nπ2)cos(nπ2)aa2a3∣ ∣ ∣ ∣=∣ ∣ ∣ ∣n!sin(x+nπ2)cos(x+nπ2)n!sin(nπ2)cos(nπ2)aa2a3∣ ∣ ∣ ∣ [Δn(x)]x=0 = ∣ ∣ ∣ ∣n!sin(0+nπ2)cos(0+nπ2)n!sin(nπ2)cos(nπ2)aa2a3∣ ∣ ∣ ∣ = 0              {Since R1  R2}.

Question 6

The value of the determinant  ∣ ∣ ∣ ∣loga(xy)loga(yz)loga(zx)logb(yz)logb(zx)logb(xy)logc(zx)logc(xy)logc(yz)∣ ∣ ∣ ∣ is 

A. 1
B. -1
C. logcxyz
D. None of these

SOLUTION

Solution : D

Applying C1C1+C2+C3
Then, ∣ ∣ ∣ ∣0loga(yz)loga(zx)0logb(zx)logb(xy)0logc(xy)logc(yz)∣ ∣ ∣ ∣=0

Question 7

If f(x)=∣ ∣ ∣1xx+12xx(x1)x(x+1)3x(x1)x(x1)(x2)x(x21)∣ ∣ ∣, then f(200) is equal to 

A. 1
B. 0
C. 200
D. -200

SOLUTION

Solution : B

f(X)=x(x+1)∣ ∣1112xx1x3x(x1)(x1)(x2)x(x1)∣ ∣=x(x+1)(x1)∣ ∣1112xx1x3xx2x∣ ∣
Applying C2C2C1 and C3C3C1 then 
f(x)=x(x+1)(x1)∣ ∣1002xx1x3x2x22x∣ ∣=x2(x+1)2(x1)∣ ∣1002x113x22∣ ∣=0f(200)=0

 

Question 8

If a, b, c are sides of a triangle and ∣ ∣ ∣a2b2c2(a+1)2(b+1)2(c+1)2(a1)2(b1)2(c1)2∣ ∣ ∣=0, then 

A. ΔABC s an equilateral triangle
B. ΔABC is right angled isosceles triangle
C. ΔABC is an isosceles triangle
D. ΔABC None of the above

SOLUTION

Solution : C

Δ=∣ ∣ ∣a2b2c2(a+1)2(b+1)2(c+1)2(a1)2(b1)2(c1)2∣ ∣ ∣
Applying R2R2R3
=4∣ ∣ ∣a2b2c2abc(a1)2(b1)2(c1)2∣ ∣ ∣
Applying R3R3R1+2R2
Δ=4∣ ∣a2b2c2abc111∣ ∣=4(ab)(bc)(ca)=0
If   a – b = 0 or b – c = 0 or c – a = 0
 a = b or b = c or c = a
ΔABC is an isosceles triangle.

Question 9

∣ ∣0aba0cbc0∣ ∣=

A. -2abc
B. abc
C. 0
D. a2+b2+c2

SOLUTION

Solution : C

∣ ∣0aba0cbc0∣ ∣=0 (Since value of determinant of skew-symmetric matrix of odd orders is 0).

Question 10

If a,b and care non zero numbers, then Δ=∣ ∣ ∣b2c2bcb+cc2a2cac+aa2b2aba+b∣ ∣ ∣ is equal to 

A. abc
B. a2b2c2
C. ab+bc+ca
D. None of these

SOLUTION

Solution : D

Multiplying R1 by a,R2 by b and R3 by c, we have 
Δ=1abc∣ ∣ ∣ab2c2abcab+aca2bc2abcbc+aba2b2cabcac+bc∣ ∣ ∣=a2b2c2abc∣ ∣bc1ab+acac1bc+abab1ac+bc∣ ∣=abc∣ ∣ ∣bc1abac1abab1ab∣ ∣ ∣{by C3C3+C1}=abc.ab∣ ∣bc11ca11ab11∣ ∣=0, [Since C2C3].
Trick : Put a=1, b=2, c=3 and check it.