Free Matrices 02 Practice Test - 12th Grade - Commerce 

Question 1

If A=[abba] and A2=[αββα], then

A. α=a2+b2,β=ab
B. α=a2+b2,β=2ab
C. α=a2+b2,β=a2b2
D. α=2ab,β=a2+b2

SOLUTION

Solution : B

A2=[αββα]=[abba][abba];α=α2+b2;β=2ab

Question 2

If A=1tanθ2tanθ21 and AB = I, then B =

A. cos2θ2.A
B. cos2θ2.AT
C. cos2θ2.I
D. None of these

SOLUTION

Solution : B

|A|=1+tan2θ2=sec2θ2AB=IBIA1[1001]1tanθ2tanθ21sec2θ2=cos2θ2.AT.

Question 3

Let A=461302125,B=240112and C = [3 1 2]. The expression which is not defined is

A. B'B
B. CAB
C. A+B'
D. A2+A

SOLUTION

Solution : C

We can see from the options that if we take transpose of B, B' will be of 2 x 3 matrix which cannot be added to a 3 x 3 matrix, as for the addition the order should be same.

Question 4

If A is 3×4 matrix and B is a matrix such that A'B and BA' are both defined. Then B is of the type

A. 3×4
B. 3×3
C. 4×4
D. 4×3

SOLUTION

Solution : A

A3×4A4×3Now A'B defined
Bis 3×p
Again B3×pA4×3 defined p=4
B is 3×4.

Question 5

If A=a000b000c, then An=

A. na000nb000nc
B. a000b000c
C. an000bn000cn
D. None of these

SOLUTION

Solution : C

Since A2=A.A=a000b000ca000b000c=a2000b2000c2
And A3=a3000b3000c3,....An=An1.A=an1000bn1000cn1a000b000c=an000bn000cn.
Note: Students should remember this question as a formula.

Question 6

For each real number x such that 1<x<1,let A(x) be the matrix (1x)1[1xx1] and z=x+y1+xyThen,

A. A(z)=A(x)+A(y)
B. A(z)=A(x)+[A(y)]1
C. A(z)=A(x)A(y)
D. A(z)=A(x)A(y)

SOLUTION

Solution : C

A(z)=A(x+y1+xy)=[1+xy(1x)(1y)] 1(x+y1+xy)(x+y1+xy)1
A(x).A(y)=A(z)

Question 7

If A=[cosθsinθsinθcosθ],B=[1011],C=ABAT,then ATCnA equals to(nϵZ+)

A. [n110]
B. [1n01]
C. [011n]
D. [10n1]

SOLUTION

Solution : D

A=[cosθsinθsinθcosθ]AAT=I          (i)Now,C=ABATATC=BAT       (ii)Now ATCnA=ATC.Cn1A=BATCn1A(from(ii))=BATC.Cn2A=B2ATCn2A=.......=Bn1ATCA=Bn1BATA=Bn=[10n1]

Question 8

A=[aij]n×n and aij=i2j2 then A is necessarily

A. a unit matrix
B. symmetric matrix
C. skew symmetric matrix
D. zero matrix

SOLUTION

Solution : C

aji=j2i2=(i2j2)=aij 

Question 9

If A is a non-diagonal involutory matrix, then

A. A - I = 0
B. A + I = 0
C. A - I is non zero singular
D. none of these

SOLUTION

Solution : C

A2=IA2I=0
(A+I)(A-I)=0
either |A+I|=0 or
|AI|=0
If |AI|0, then (A+I)(AI)=0A+I=0 which is not so
|AI| and  AI0.

Question 10

If A and B are two non singular matrices and both are symmetric and commute each other then

A. Both A1B and A1B1 are symmetric
B. A1B is symmetric but A1B1 is not symmetric
C. A1B1  is symmetric but A1B is not symmetric
D. Neither A1B nor A1B1 are symmetric

SOLUTION

Solution : A

AB =BA
Previous & past multiplying both sides by A1.
A1(AB)A1=A1(BA)A1(A1A)(BA1)=A1B(AA1)(BA1)1=(A1B)1=(A1)1B1(reversal laws)=A1B(as B=B1)(A1)1=A1A1B is symmetric
Similarly for A1B1.