A body is subjected to a direct stress 'σ' in one plane accompani

A body is subjected to a direct stress 'σ' in one plane accompani
| A body is subjected to a direct stress 'σ' in one plane accompanied by a simple shear stress 'τ', the maximum normal stress is

A. <span class="math-tex">\(\frac{\sigma }{2} + \frac{1}{2}\sqrt {{\sigma ^2} + 4{\tau ^2}} \)</span>

B. <span class="math-tex">\(\frac{\sigma }{2} - \frac{1}{2}\sqrt {{\sigma ^2} + 4{\tau ^2}} \)</span>

C. <span class="math-tex">\(\frac{\sigma }{2} + \frac{1}{2}\sqrt {{\sigma ^2} - 4{\tau ^2}} \)</span>

D. <span class="math-tex">\(\frac{\sigma }{2} - \frac{1}{2}\sqrt {{\sigma ^2} - 4{\tau ^2}} \)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

Concept:

The maximum and minimum normal stress is given by

\({\sigma _{max,\;\;min}} = \frac{{{\sigma _x} + {\sigma _y}}}{2}\; \pm \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

where σand σy are direct stress and τxy is the shear stress

Calculation:

Given:

From the given condition we have,

σx = σ, σy = 0, τxy = τ

Now maximum normal stress is:

\({\sigma _{max}} = \frac{{{\sigma _x} + {\sigma _y}}}{2} + \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

\(\sigma_{max}= \frac{\sigma }{2} + \frac{1}{2}\sqrt {{\sigma ^2} + 4{τ ^2}} \)