A cantilever beam of span I and flexural rigidity EI is subjected

A cantilever beam of span I and flexural rigidity EI is subjected
| A cantilever beam of span I and flexural rigidity EI is subjected to a concentrated load W at mid-span. The slope at the free end is

A. <span class="math-tex">\(\frac{{{\rm{W}}{{\rm{l}}^2}}}{{2{\rm{EI}}}}\)</span>

B. <span class="math-tex">\(\frac{{{\rm{W}}{{\rm{l}}^2}}}{{4{\rm{EI}}}}\)</span>

C. <span class="math-tex">\(\frac{{{\rm{W}}{{\rm{l}}^2}}}{{8{\rm{EI}}}}\)</span>

D. <span class="math-tex">\(\frac{{{\rm{W}}{{\rm{l}}^2}}}{{3{\rm{EI}}}}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Solving by Moment area method:

θA would be zero as there is fixed support at A.

\({{\rm{\theta }}_{\rm{C}}} - {{\rm{\theta }}_{\rm{A}}} = \frac{{{\rm{Area\;of\;BMD\;between\;C\;and\;A}}}}{{{\rm{EI}}}}\)

∴ \({{\rm{\theta }}_{\rm{C}}} = \frac{1}{2} \times \frac{{{\rm{WL}}}}{2} \times \frac{{\rm{L}}}{2} \times \frac{1}{{{\rm{EI}}}} = \frac{{{\rm{W}}{{\rm{L}}^2}}}{{8{\rm{EI}}}}\)

Note:

Deflection and slope of various beams are given by:

 

 

\({y_B} = \frac{{P{L^3}}}{{3EI}}\)

\({\theta _B} = \frac{{P{L^2}}}{{2EI}}\)

 

\({y_B} = \frac{{w{L^4}}}{{8EI}}\)

\({\theta _B} = \frac{{w{L^3}}}{{6EI}}\)

 

 

\({y_B} = \frac{{M{L^2}}}{{2EI}}\)

\({\theta _B} = \frac{{ML}}{{EI}}\)

 

 

\({y_B} = \frac{{w{L^4}}}{{30EI}}\)

\({\theta _B} = \frac{{w{L^3}}}{{24EI}}\)

 

 

\({y_c} = \frac{{P{L^3}}}{{48EI}}\)

\({\theta _B} = \frac{{w{L^2}}}{{16EI\;}}\)

 

 

\({y_c} = \frac{5}{{384}}\frac{{w{L^4}}}{{EI}}\)

\({\theta _B} = \frac{{w{L^3}}}{{24EI}}\)

 

 

\({y_c} = 0\)

\({\theta _B} = \frac{{ML}}{{24EI}}\)

 

 

\({y_c} = \frac{{M{L^2}}}{{8EI}}\)

\({\theta _B} = \frac{{ML}}{{2EI}}\)

 

 

\({y_c} = \frac{{P{L^3}}}{{192EI}}\)

\({\theta _A} = {\theta _B} = {\theta _C} = 0\)

 

 

\({y_c} = \frac{{w{L^4}}}{{384EI}}\)

\({\theta _A} = {\theta _B} = {\theta _C} = 0\)

 

Where, y = Deflection of beam, θ = Slope of beam