A column of timber section 15 cm × 20 cm is 10-meter-long with it

A column of timber section 15 cm × 20 cm is 10-meter-long with it
|

A column of timber section 15 cm × 20 cm is 10-meter-long with its both ends being fixed. If Young’s modulus for timber is 17.5 kN/mm2, the safe load carrying capacity (in kN) of the column is ___

(Considering factor safety is 3)

A. 129.54 

B. 230.29 

C. 388.62 

D. 690.87

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

Concept:

Crippling load (P) for a column based on Euler’s theory is given as:

\({\rm{P}} = \frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{\rm{L}}e^2}}\)

Where

E = Elastic modulus of the material

I = Least value of the moment of inertia

Le = Effective length of the column

Given:

Dimension of section = 15 cm × 20 cm, Actual length (L) = 10 m = 10000 mm, Young’s modulus (E) = 17.5 kN/mm2

Solution:

Effective length (Le) = L/2 (when both the ends are fixed)

\(\therefore {{\rm{L}}_{\rm{e}}} = \frac{{10000}}{2} = 5000{\rm{\;mm\;}}\left( {{\rm{\because\;L\;}} = 10000{\rm{\;mm}}} \right)\)

For the given cross-section:

Moment of inertia of the section about X-X axis:

\({{\rm{I}}_{{\rm{XX}}}} = \frac{{15 \times {{20}^3}}}{{12}} = 10000{\rm{\;c}}{{\rm{m}}^4} = 10000 \times {10^4}{\rm{\;m}}{{\rm{m}}^4}\)

Moment of inertia of the section about Y-Y axis:

\({{\rm{I}}_{{\rm{YY}}}} = \frac{{20 \times {{15}^3}}}{{12}} = 5625{\rm{\;c}}{{\rm{m}}^4} = 5625 \times {10^4}{\rm{\;m}}{{\rm{m}}^4}\)

Since IYY is less than IXX, the column will tend to buckle in Y-Y direction.

\({\rm{P}} = \frac{{{{\rm{\pi }}^2} \times 17.5 \times 5625 \times {{10}^4}}}{{{{5000}^2}}} = 388.62{\rm{\;kN}}\)

Safe load for the column:

\(\therefore {\rm{\;Safe\;load\;}} = \frac{{{\rm{Crippling\;load}}}}{{{\rm{Factor\;of\;safety}}}} = \frac{{388.62}}{3} = 129.54{\rm{\;kN}}\)