A curve passes through the point (x = 1, y = 0) and satisfies the

A curve passes through the point (x = 1, y = 0) and satisfies the
| A curve passes through the point (x = 1, y = 0) and satisfies the differential equation \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{{{\rm{x}}^2} + {{\rm{y}}^2}}}{{2{\rm{y}}}} + \frac{{\rm{y}}}{{\rm{x}}}.\) The equation that describes the curve is

A. <span class="math-tex">\({\rm{In}}\left( {1 + \frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^2}}}} \right) = {\rm{x}} - 1\)</span>

B. <span class="math-tex">\(\frac{1}{2}{\rm{In}}\left( {1 + \frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^2}}}} \right) = {\rm{x}} - 1\)</span>

C. <span class="math-tex">\({\rm{In}}\left( {1 + \frac{{\rm{y}}}{{\rm{x}}}} \right) = {\rm{x}} - 1\)</span>

D. <span class="math-tex">\(\frac{1}{2}{\rm{In}}\left( {1 + \frac{{\rm{y}}}{{\rm{x}}}} \right) = {\rm{x}} - 1\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

\(\frac{{dy}}{{dx}} = \frac{{{x^2} + {y^2}}}{{2y}} + \frac{y}{x}\)

\(\frac{{dy}}{{dx}} = \frac{{{x^2}}}{{2y}} + \frac{y}{2} + \frac{y}{x}\) 

\(y\frac{{dy}}{{dx}} - \left( {\frac{1}{x} + \frac{1}{2}} \right){y^2} = \frac{{{x^2}}}{2}\) 

y2 = t

\(2y\frac{{dy}}{x} = \frac{{dt}}{{dx}}\) 

\(\frac{1}{2}\frac{{dt}}{{dx}} - \left( {\frac{1}{x} + \frac{1}{2}} \right)t = \frac{{{x^2}}}{2}\) 

\(\frac{{dt}}{{dx}} - 2\left( {\frac{1}{x} + \frac{1}{2}} \right)t = {x^2}\) 

The above is linear differential equation of the form

\(\frac{{dt}}{{dx}} = + pt = Q\) 

Integrating factor \(= {e^{ - 2\smallint \left( {\frac{1}{x} + \frac{1}{2}} \right)dx}}\)

= e-2ln x. e-x

\(= {e^{\ln {x^{ - 2}}}}.{e^{ - x}}\) 

\(= \frac{{{e^{ - x}}}}{{{x^2}}}\) 

Solution is given by:

\(\frac{{t\;{e^{ - x}}}}{{{x^2}}} = \smallint \frac{{{x^2}{e^{ - x}}}}{{{x^2}}}dx + c\) 

Substitute t = y2

\(\frac{{{y^2}{e^{ - x}}}}{{{x^2}}} = - {e^{ - x}} + c\) 

At, x = 1, y = 0

0 = -e-1 + c

c = e-1 = y­e

substituting in the solution

\({y^2}.\frac{{{e^{ - x}}}}{{{x^2}}} = - {e^{ - x}} + {e^{ - 1}}\) 

\(\left( {\frac{{{y^2}}}{{{x^2}}} + 1} \right){e^{ - x}} = {e^{ - 1}}\) 

\(\left( {1 + \frac{{{y^2}}}{{{x^2}}}} \right) = \frac{{{e^{ - 1}}}}{{{e^{ - x}}}} = {e^{x - 1}}\) 

Taking log both sides

\(\ln \left( {1 + \frac{{{y^2}}}{{{x^2}}}} \right) = x - 1\)