A real-valued signal 𝑥(𝑡) limited to the frequency band \(\left

A real-valued signal 𝑥(𝑡) limited to the frequency band \(\left
|

A real-valued signal 𝑥(𝑡) limited to the frequency band \(\left| f \right| \le \frac{W}{2}\) is passed through a linear time-invariant system whose frequency response is

\(H\left( f \right) = \left\{ {\begin{array}{*{20}{c}} {{e^{ - j4\pi f,\;\;\;\left| f \right| \le \frac{W}{2}}}}\\ {0,\;\;\;\;\left| f \right| > \frac{W}{2}} \end{array}} \right.\) 

The output of the system is

A. x(t + 4)

B. x(t - 4)

C. x(t + 2)

D. x(t - 2)

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Concept:

Time-shifting property of Fourier Transform:

Shiting in time domain results in a phase shift in the frequency domain, i.e.

\(If\;x\left( t \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right)\) 

\(x\left( {t - {t_0}} \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right){e^{ - j2\pi f{t_0}}}\)

If a signal x(t) is passed through a system having transfer function H(f), then the output of the system is:

\(Y\left( f \right) = X\left( f \right)H\left( f \right)\) 

where \(x\left( t \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right)\) and

\(y\left( t \right)\mathop \leftrightarrow \limits^{FT} Y\left( f \right)\) 

Calculation:

Since both X(f) and H(f) are band-limited to the same frequency band, we can write:

\(Y\left( f \right) = X\left( f \right).H\left( f \right) = X\left( f \right){e^{ - j4\pi f}} = X\left( f \right).{e^{ - i2\pi f \times 2}}\) 

Using time shifting property of the Fourier transform, we can write:

\(X\left( f \right).{e^{ - i2\pi f \times 2}}\xrightarrow{IFT} x\left( {t - 2} \right)\)