A realization of a stable discrete-time system is shown in the fi

A realization of a stable discrete-time system is shown in the fi
|

A realization of a stable discrete-time system is shown in the figure. If the system is excited by a unit step sequence input x[n], the response y[n] is

A. <span class="math-tex">\(4{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right] - 5{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right]\)</span>

B. <span class="math-tex">\(5{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right] - 3{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right]\)</span>

C. <span class="math-tex">\(5{\left( {\frac{1}{3}} \right)^n}u\left[ n \right] - 5{\left( {\frac{2}{3}} \right)^n}u\left[ n \right]\)</span>

D. <span class="math-tex">\(5{\left( {\frac{2}{3}} \right)^n}u\left[ n \right] - 5{\left( {\frac{1}{3}} \right)^n}u\left[ n \right]\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Calculation:

Given network is shown below:

where 

Now,

\(Y\left[ z \right] = - \frac{5}{3}.{z^{ - 1}}{Y_1}\left[ z \right] + \frac{5}{3}{z^{ - 1}}{Y_1}\left[ z \right]\)

\( Y\left[ z \right] = \left[ { - \frac{5}{3}{z^{ - 1}} + \frac{5}{3}{z^{ - 2}}} \right]{Y_1}\left[ z \right]\)      ----1)
 

\(X\left[ z \right] + {z^{ - 1}}.{Y_1}\left[ z \right] + \left( { - \frac{2}{9}} \right)\left( {{z^{ - 2}}} \right){Y_1}\left[ z \right] = {Y_1}\left[ z \right]\)

\( X\left[ z \right] = \left[ {1 - {z^{ - 1}} + \frac{2}{9}{z^{ - 2}}} \right]{Y_1}\left[ z \right]\)      ----2)

Dividing equation 1) & 2) we get:

\(\frac{{Y\left[ z \right]}}{{X\left[ z \right]}} = \frac{{\frac{5}{3}\left[ {1 - z} \right]}}{{{z^2} - z + \frac{2}{9}}}\)       ----3)

Since x(n) = u(n)

\(X\left[ z \right] = \frac{1}{{1 - {z^{ - 1}}}}\)

Putting this in Equation-(3), we get;

\(Y\left[ z \right] = \left( {\frac{5}{3}} \right)\frac{{\left( { - z} \right)}}{{\left( {z - \frac{1}{3}} \right)\left( {z - \frac{2}{3}} \right)}}\)

\(Y\left[ z \right] = \frac{{5z}}{{z - \frac{1}{3}}} - \frac{{5z}}{{z - \frac{2}{3}}}\)  (Using Partial Fractions)

\( {Since\;{\alpha ^n}u\left[ n \right]\mathop \to \limits^{Z.T} \frac{z}{{z - \alpha }}} \)

By taking the Inverse Laplace Transform;

\(y\left[ n \right] = \left( 5 \right){\left( {\frac{1}{3}} \right)^n}u\left[ n \right] - \left( 5 \right){\left( {\frac{2}{3}} \right)^n}u\left( n \right)\)

Hence Option (3) is Correct.