A rolled steel joist is simply supported at its end and carries a

A rolled steel joist is simply supported at its end and carries a
|

A rolled steel joist is simply supported at its end and carries a uniformly distributed load which causes a maximum deflection of 10 mm and slope at the ends of 0.002 radians. The length of the joist will be

A. 10 m

B. 12 m

C. 14 m

D. 16 m

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

\(\begin{array}{l} {Y_{max}} = \frac{5}{{384}}\frac{{W{L^4}}}{{EI}} = 0.010\;m\\ 0.002 = {\theta _A} = {\theta _B} = \frac{{W{L^3}}}{{24EI}}\;\\ {Y_{max}} = \frac{5}{{384}} \times 24 \times \frac{{W{L^3}}}{{24EI}} \times L\\ 0.010 = \;\frac{5}{{384}} \times 24 \times 0.002 \times L \end{array}\)

L  = 16 m

Important Point:

Deflection and slope of various beams are given by:

 

\({y_B} = \frac{{P{L^3}}}{{3EI}}\)

 

\({\theta _B} = \frac{{P{L^2}}}{{2EI}}\)

 \({y_B} = \frac{{w{L^4}}}{{8EI}}\)

 

\({\theta _B} = \frac{{w{L^3}}}{{6EI}}\)

 

\({y_B} = \frac{{M{L^2}}}{{2EI}}\)

 

\({\theta _B} = \frac{{ML}}{{EI}}\)

 

\({y_B} = \frac{{w{L^4}}}{{30EI}}\)

 

\({\theta _B} = \frac{{w{L^3}}}{{24EI}}\)

 

\({y_c} = \frac{{P{L^3}}}{{48EI}}\)

 

\({\theta _B} = \frac{{w{L^2}}}{{16EI\;}}\)


 

\({y_c} = \frac{5}{{384}}\frac{{w{L^4}}}{{EI}}\)

 

\({\theta _B} = \frac{{w{L^3}}}{{24EI}}\)


 

\({y_c} = 0\)

\({\theta _B} = \frac{{ML}}{{24EI}}\)

\({y_c} = \frac{{M{L^2}}}{{8EI}}\)

 

\({\theta _B} = \frac{{ML}}{{2EI}}\)


\({y_c} = \frac{{P{L^3}}}{{192EI}}\)

\({\theta _A} = {\theta _B} = {\theta _C} = 0\)

\({y_c} = \frac{{w{L^4}}}{{384EI}}\)

\({\theta _A} = {\theta _B} = {\theta _C} = 0\)

Where, y = Deflection of beam, θ = Slope of beam