A tank of uniform cross sectional cross area (A) containing liqui

A tank of uniform cross sectional cross area (A) containing liqui
| A tank of uniform cross sectional cross area (A) containing liquid upto height (H) has an orifice of cross sectional areas (a) at its bottom. The time required to empty the tank completely will be

A. <span class="math-tex">\(\frac{{2A\sqrt {{H_1}} }}{{{C_d}a\sqrt {2g} }}\)</span>

B. <span class="math-tex">\(\frac{{2A{H_1}}}{{{C_d}a\sqrt {2g} }}\)</span>

C. <span class="math-tex">\(\frac{{2AH_1^{3/2}}}{{{C_d}a\sqrt {2g} }}\)</span>

D. <span class="math-tex">\(\frac{{2AH_1^2}}{{{C_d}a\sqrt {2g} }}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

Concept:

Let h is the height of water at any instant in a container and 'dh' is a change in height in 'dt' time.

\( - Adh = {C_d}\sqrt {2gh} .a.dt\)

\(A\mathop \smallint \limits_{{H_1}}^{{H_2}} \frac{{ - dh}}{{\sqrt {2gh} }} = {c_d}\;a\mathop \smallint \limits_0^t dt\)

\( - A\left[ {\frac{1}{{\sqrt {2g} \;}}\frac{{{h^{\frac{{ - 1}}{2} + 1}}}}{{\frac{{ - 1}}{2} + 1}}} \right]_{{H_1}}^{{H_2}} = {C_d}.a.t\)

\(\frac{{ - A}}{{\sqrt {2g} }}.2\left[ {\sqrt {{H_2}} - \sqrt {{H_1}} } \right] = {C_d}.a.t\)

When tank is empty H2 = 0

\(\frac{{2A.\sqrt {{H_1}} }}{{\sqrt {2g} }} = {c_d}.a.t\)

\(t = \frac{{2A\sqrt {{H_1}} }}{{a.{c_d}\sqrt {2g} }}\)