An analytic function of a complex variable z = x + iy is expresse

An analytic function of a complex variable z = x + iy is expresse
| An analytic function of a complex variable z = x + iy is expressed as f(z) = u(x, y) + i v(x, y), where i = √-1. If u(x, y) = x2 – y2, then expression for v(x, y) in terms of x, y and a general constant c would be

A. xy + c

B. <span class="math-tex">\(\frac{{{x^2} + {y^2}}}{2} + c\)</span>

C. 2xy + c

D. <span class="math-tex">\(\frac{{{{\left( {x - y} \right)}^2}}}{2} + c\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Concept:

f(z) = u(x, y) + i v(x, y)

since f(z) is analytic, C-R equations are as follows

\(\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial y}}\;and~\frac{{\partial u}}{{\partial y}} = - \frac{{\partial v}}{{\partial x}}\)

Calculation:

Given:

u = x2 – y2

\(\frac{{\partial u}}{{\partial x}} = 2x = \frac{{\partial v}}{{\partial y}}\)

\(\frac{{\partial u}}{{\partial y}} = - 2y = - \frac{{\partial v}}{{\partial x}}\)

\(\therefore dv = \frac{{\partial v}}{{\partial x}}dx + \frac{{\partial v}}{{\partial y}}dy\)

⇒ dv = 2y dx + 2x dy

⇒ v = 2xy + c

Alternate method:

\({\rm{u}} = {{\rm{x}}^2} - {{\rm{y}}^2}\)

\(\frac{{{\rm{du}}}}{{{\rm{dx}}}} = 2{\rm{x~~and}}~~\frac{{{\rm{du}}}}{{{\rm{dy}}}} = {\rm{}} - 2{\rm{y}}\)

Since f(z) is analytic, C-R equations are as follows

\(\frac{{{\rm{du}}}}{{{\rm{dx}}}} = \frac{{{\rm{dv}}}}{{{\rm{dy}}}}{\rm~~{and}}~~\frac{{{\rm{du}}}}{{{\rm{dy}}}} = - \frac{{{\rm{dv}}}}{{{\rm{dx}}}}\)

We know that, f’(z) = \(\frac{{{\rm{du}}}}{{{\rm{dx}}}} + {\rm{i}}\frac{{{\rm{dv}}}}{{{\rm{dx}}}} = \frac{{{\rm{du}}}}{{{\rm{dx}}}} + {\rm{i}}\frac{{ - {\rm{du}}}}{{{\rm{dy}}}} = 2{\rm{x}} + {\rm{i}}\left( {2{\rm{y}}} \right)\)

Put x = z and y = 0

f’(z) = 2z

Integrate both side,

\(\mathop \smallint \nolimits {\rm{f'}}\left( {\rm{z}} \right) = {\rm{}}\mathop \smallint \nolimits 2{\rm{zdz}}\)

f(z) = z2 + c

For imaginary part,

f(u + iv) = (x + iy)2 + c = (x2 – y2 + i(2xy)) + c

Therefore, u = (x2 – y2)  and v = 2xy