At a point in a loaded material subjected to plane strains: ϵ x =

At a point in a loaded material subjected to plane strains: ϵ x =
| At a point in a loaded material subjected to plane strains: ϵx = 500 × 10-6, ϵy = 180 × 10-6 and ϕxy = 250 × 10-6 respectively, Then

A. Maximum shearing strain is 406.06 &times; 10<sup>-6</sup>

B. Maximum principal strain is 543. 03 &times; 10<sup>-6</sup>

C. Minimum principal strain is 203.03 &times; 10<sup>-6</sup>

D. Maximum shearing strain is 203.03 &times; 10<sup>-6</sup>

Please scroll down to see the correct answer and solution guide.

Right Answer is:

SOLUTION

Concept

Principle strains are given by

\({\epsilon_{1\;}} = \frac{{{\epsilon_x} + {\epsilon_y}}}{2} + \sqrt {{{\left( {\frac{{{\epsilon_x} - {\epsilon_x}}}{2}} \right)}^2} + {{\left( {\frac{{{\phi _{xy}}}}{2}} \right)}^2}\;} \;\;\)

\({\epsilon_{2\;}} = \frac{{{\epsilon_x} + {\epsilon_y}}}{2} - \sqrt {{{\left( {\frac{{{\epsilon_x} - {\epsilon_x}}}{2}} \right)}^2} + {{\left( {\frac{{{\phi _{xy}}}}{2}} \right)}^2}\;} \)

Maximum shearing strain is given by

\(\left| {\frac{{{\phi _{max}}}}{2}} \right| = \left| {\frac{{({\epsilon_1} - {\epsilon_2})}}{2}} \right|\)

Calculation

Given,

ϵx = 500 × 10-6, ϵy = 180 × 10-6 and ϕxy = 250 × 10-6

Principle strains are given by

\({\epsilon_{1\;}} = \frac{{{\epsilon_x} + {\epsilon_y}}}{2} + \sqrt {{{\left( {\frac{{{\epsilon_x} - {\epsilon_x}}}{2}} \right)}^2} + {{\left( {\frac{{{\phi _{xy}}}}{2}} \right)}^2}\;} \;\;\)

\({\epsilon_{1\;}} = \frac{{\left( {500 + 180} \right) \times {{10}^{ - 6}}}}{2} + \sqrt {{{\left( {\frac{{500 - 180}}{2}} \right)}^2} \times {{10}^{ - 12}} + {{\left( {\frac{{250}}{2}} \right)}^2} \times {{10}^{ - 12}}\;} \;\;\)

= 340 × 10-6 + 203.03 × 10-6

= 543. 03 × 10-6

\({\epsilon_{2\;}} = \frac{{{\epsilon_x} + {\epsilon_y}}}{2} - \sqrt {{{\left( {\frac{{{\epsilon_x} - {\epsilon_x}}}{2}} \right)}^2} + {{\left( {\frac{{{\phi _{xy}}}}{2}} \right)}^2}\;}\)

\({\epsilon_{2\;}} = \frac{{\left( {500 + 180} \right) \times {{10}^{ - 6}}}}{2} - \sqrt {{{\left( {\frac{{500 - 180}}{2}} \right)}^2} \times {{10}^{ - 12}} + {{\left( {\frac{{250}}{2}} \right)}^2} \times {{10}^{ - 12}}\;} \)

= 340 × 10-6 - 203.03 × 10-6

= 136.97 × 10-6

Maximum shearing strain is given by

\(\left| {\frac{{{\phi _{max}}}}{2}} \right| = \left| {\frac{{({\epsilon_1} - {\epsilon_2})}}{2}} \right|\)

\({\phi _{max}} = {\epsilon_1} - {\epsilon_2}\)

= 543. 03 × 10-6 - 136.97 × 10-6

= 406.06 × 10-6