The block diagram of two half-wave rectifiers are shown in the fi

The block diagram of two half-wave rectifiers are shown in the fi
|

The block diagram of two half-wave rectifiers are shown in the figure. The transfer characteristics of the rectifiers are also shown within the block.

It is desired to make a full-wave rectifier using the above two half-wave rectifiers. The resultants circuit will be

A. <img alt="" src="//storage.googleapis.com/tb-img/production/20/06/F1_S.B_Madhu_10.06.20_D35.png" style="width: 335px; height: 138px;" />

B. <img alt="" src="//storage.googleapis.com/tb-img/production/20/06/F1_S.B_Madhu_10.06.20_D36.png" style="width: 335px; height: 190px;" />

C. <img alt="" src="//storage.googleapis.com/tb-img/production/20/06/F1_S.B_Madhu_10.06.20_D37.png" style="width: 339px; height: 190px;" />

D. <img alt="" src="//storage.googleapis.com/tb-img/production/20/06/F1_S.B_Madhu_10.06.20_D38.png" style="width: 342px; height: 136px;" />

Please scroll down to see the correct answer and solution guide.

Right Answer is: B

SOLUTION

Let the input Vin be a sin wave as shown:

According to the given linear characteristic of the rectifiers, for the above input sin wave, the output of the rectifier P will be:

Similarly, for the same input sin wave applied to rectifier Q, the output of rectifier Q will be:

Now, we require a full-wave rectified output as:

We can obtain the above output if we define the output as:

V0 = k (-Vp + VQ)

Where k = gain of the op-amp.

∴ P should be connected at the inverting terminal of the op-Amp and Q to the non-inverting terminal.