The Schmitt trigger circuit shown in the figure below uses Zener

The Schmitt trigger circuit shown in the figure below uses Zener
|

The Schmitt trigger circuit shown in the figure below uses Zener diode with Vd = 0.7 V. If the threshold voltage V1 is zero and hysteresis voltage VH = 0.2 V, then what is \(\frac{{{R_1}}}{{{R_2}}}\) and VR?

A. R<sub>1</sub>/R<sub>2</sub> = 6 and V<sub>R</sub> = 0.15 V

B. R<sub>1</sub>/R<sub>2</sub> = 67 and V<sub>R</sub> = -0.15 V

C. R<sub>1</sub>/R<sub>2</sub> = 66 and V<sub>R</sub> = -0.10 V

D. R<sub>1</sub>/R<sub>2</sub> = 66 and V<sub>R</sub> = -0.15 V

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Concept:

The input voltage Vi changes the state of output therefore it exceeds its voltage level above a certain value called upper and lower threshold voltages.

The upper threshold point:

\({V_{UTP}} = {V_R} \times \frac{{{R_1}}}{{{R_1} + {R_2}}} + {V_0}\frac{{{R_2}}}{{{R_1} + {R_2}}}\)

Lower threshold point:

\({V_{LTP}} = {V_R}\frac{{{R_1}}}{{{R_1} + {R_2}}} - {V_0}\;\frac{{{R_2}}}{{{R_1} + {R_2}}}\)

Now, VH = VUTP - VLTP (hysteresis voltage)

Calculation:

In Schmitt trigger, Zener diode voltage vd = 0.7 V

Threshold voltage V1 = 0

Hysteresis voltage VH = 0.2 V

\(\Rightarrow {V_H} = {V_R}\frac{{{R_1}}}{{{R_1} + {R_2}}} + {V_0}\frac{{{R_2}}}{{{R_1} + {R_2}}} - \left( {{V_R}\frac{{{R_1}}}{{{R_1} + {R_2}}} - {V_0}\frac{{{R_2}}}{{{R_1} + {R_2}}}} \right)\)

\(\Rightarrow {V_H} = 2\;{V_0}\frac{{{R_2}}}{{{R_1} + {R_2}}}\)

Now, V0 = VZ + VD = 0.7 + 6 = 6.7 V

\( \Rightarrow 0.2 = 2 \times 6.7 \times \frac{1}{{1 + \frac{{{R_1}}}{{{R_2}}}}}\)

\( \Rightarrow 1 + \frac{{{R_1}}}{{{R_2}}} = 67\)

\(\Rightarrow \frac{{{R_1}}}{{{R_2}}} = 66\)

Now, (threshold) \({V_1} = {V_R} \times \frac{{{R_1}}}{{{R_1} + {R_2}}} + {V_0} \times \frac{{{R_2}}}{{{R_1} + {R_2}}}\)

\(\Rightarrow 0 = {V_R}\frac{1}{{1 + \frac{{{R_2}}}{{{R_1}}}}} + {V_0}\frac{1}{{1 + \frac{{{R_1}}}{{{R_2}}}}}\)

\( \Rightarrow {V_2} \times \frac{1}{{1 + \frac{1}{{66}}}} = - 6.7 \times \frac{1}{{1 + 66}}\)

\(\Rightarrow {V_R} = \; - 6.7 \times \frac{1}{6} = - 0.10\;V\)