The signal x(t), whose Laplace transform is defined as \(X\left(

The signal x(t), whose Laplace transform is defined as \(X\left(
| The signal x(t), whose Laplace transform is defined as \(X\left( s \right) = \frac{{s + 1}}{{{s^2} + 5s + 6}}; - 3 < ROC < - 2\)  is:

A. <span class="math-tex">\({e^{ - 2t}}u\left( { - t} \right) + 2{e^{ - 3t}}u\left( t \right)\)</span>

B. <span class="math-tex">\(- {e^{ - 2t}}u\left( { - t} \right) + 2{e^{ - 3t}}u\left( t \right)\)</span>

C. <span class="math-tex">\(- {e^{ - 2t}}u\left( { - t} \right) - 2{e^{ - 3t}}u\left( t \right)\)</span>

D. <span class="math-tex">\({e^{ - 2t}}u\left( { - t} \right) - 2{e^{ - 3t}}u\left( t \right)\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

Concept:

Laplace Transform representation of a signal includes the expression and the Region of Convergence (ROC).

\({e^{ - at}}u\left( t \right)\mathop \leftrightarrow \limits^{L.T.} \frac{1}{{s + a}}\;with\;ROC > - a\)

\(and - {e^{ - at}}u\left( t \right)\mathop \leftrightarrow \limits^{L.T.} \frac{1}{{s + a}}\;with\;ROC < - a\)

Calculation:

For the given Laplace transform X(s), the expression is simplified using Partial Fraction as shown:

\(X\left( s \right) = \frac{{s + 1}}{{s + 5s + 6}} = \frac{{s + 1}}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\)

\(\Rightarrow \frac{{s + 1}}{{\left( {s + 2} \right)\left( {s + 3} \right)}} = \frac{A}{{s + 2}} + \frac{B}{{s + 3}}\)

⇒ s + 1 = A(s + 3) + B(s + 2)

⇒ Putting s = -2,

⇒ -1 = A

Putting s = -3

-2 = -B

B = 2

\(X\left( s \right) = \frac{{s + 1}}{{\left( {s + 2} \right)\left( {s + 3} \right)}} = - \frac{1}{{s + 2}} + \frac{2}{{s + 3}}\)

The inverse Laplace Transform of the above for the region of convergence given as -3 < ROC < -2 will be:

\(= - \left[ { - {e^{ - 2t}}u\left( { - t} \right)} \right] + 2{e^{ - 3t}}u\left( t \right)\)

= e-2tu(-t) + 2e-3t u(t)