The y parameters of the above network are :

The y parameters of the above network are :
|

The y parameters of the above network are :

A. <span class="math-tex">\(\left[ {\begin{array}{*{20}{c}} { - 1}&amp;1\\ { - 1}&amp;{ - 2} \end{array}} \right]\)</span>

B. <span class="math-tex">\(\left[ {\begin{array}{*{20}{c}} 1&amp;{ - 1}\\ 1&amp;{ - 2} \end{array}} \right]\)</span>

C. <span class="math-tex">\(\left[ {\begin{array}{*{20}{c}} {\frac{{ + 1}}{3}}&amp;{\frac{{ - 2}}{3}}\\ {\frac{{ - 1}}{3}}&amp;{\frac{{ - 1}}{3}} \end{array}} \right]\)</span>

D. <span class="math-tex">\(\left[ {\begin{array}{*{20}{c}} {\frac{{ - 2}}{3}}&amp;{\frac{{ - 1}}{3}}\\ {\frac{1}{3}}&amp;{\frac{{ - 1}}{3}} \end{array}} \right]\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Apply KVL at outer loop

V1 – 2 I1 + J2 (1) = V2

-2I1 + I2 = V2 – V1           -------(1)

Apply KCL at Node

I1 + I2 = -V2            ------(2)

(2) – (1)

(I1 + I2) – (I2 – 2 I1) = -V2 – (V2 – V1)

3 J1 = V1 – 2V2

\({I_1} = \frac{1}{3}{v_1} - \frac{2}{3}{v_2} \)      -------(3)

Substitute (3) in (2)

I1 + I2 = -V2

I2 = V2 – I1

\(\begin{array}{l} {I_2} = - {V_2} + \frac{2}{3}{v_2} - \frac{1}{3}\;{v_1}\\ {I_2} = \frac{{ - 1}}{3}{v_2} - \frac{1}{3}{v_1} \end{array}\)

\(\left[ {\begin{array}{*{20}{c}} {{I_1}}\\ {{I_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{3}}&{\frac{{ - 2}}{3}}\\ {\frac{{ - 1}}{3}}&{\frac{{ - 1}}{3}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{v_1}}\\ {{v_2}} \end{array}} \right]\)