Free Continuity and Differentiability 03 Practice Test - 12th Grade - Commerce 

Question 1

If f(x)=(logcotxtan x)(logtanxcot x)1+tan1(x(4x2)) then f'(0) is equal to

A. 2
B. 2
C. 12
D. 0

SOLUTION

Solution : C

f(x)=(logcotxtan x)(logtan xcot x)+tan1(x(4x2)) 
f(x)=1+tan1(x(4x2)) 
Now Put x=2sinθ, we get
f(x)=1+tan1(2sinθ44sin2θ)f(x)=1+tan1(2sinθ2cosθ)f(x)=1+tan1(tanθ)f(x)=1+θf(x)=1+sin1(x2)f(x)=0+11(x2)212f(0)=12

Question 2

If x2+y2=t1t and x4+y4=t2+1t2,then x3ydydx equals

A. - 1
B.
C. 1
D. None of these

SOLUTION

Solution : C

x2+y2=t1t
On squaring both the sides
=x4+y4+2x2y2 = t2+1t22 
Given that -  
x4+y4=t2+1t2
x2y2=1
x2.2ydydx+y2.2x=0
x3ydydx=x2y2=1

Question 3

If y=(1+cos 2 θ1cos2 θ),dydθ at θ=3π4 is

A. 2
B. 2
C. ±2
D. None of these

SOLUTION

Solution : B

y=(1+cos 2 θ1cos 2 θ)
=|cotθ|=cot θ(θ=3π4)
dydθ=cosec2θ
dydθ|θ=3π/4=(2)2=2

Question 4

If y=sin x+sin x+sin x+.....,then dydx is equal to

A. 2y1cos x
B. cos x2y1
C. 2x1cos x
D. cos x2x1

SOLUTION

Solution : B

y=sin x+yy2y=sin x
(2y1)dydx=cos x

Question 5

If (x2+y2)=a.etan1(y/x) a>0,then y"(0) is equal to

A. 2aeπ/2
B.
aeπ/2
C. 2aeπ/2
D. Does not exist

SOLUTION

Solution : C

(x2+y2)=a.etan1(y/x)
12x2+y2(2x+2yy) =a.etan1(y/x)×11+y2x2×xyyx2.....(i)
x+yyx2+y2=(x2+y2)×xyyx2+y2
[from Eq.(i)]
x+yy=xyyy=x+yxy
y"=2(xyy)(xy)2
y"(0)=2(0y(0)){0y(0)}2=2aeπ/2=2aeπ/2

Question 6

If y = tan1(1+sinx1sinx),π2<x<π, then dydx equals

A. 12
B. 1
C. 12
D. 1

SOLUTION

Solution : A

y=tan1 (1cos(π2+x)1+cos(π2+x))=tan1tan(π4+x2))(i)
Now,       π2<x<π
   π4<x2<π2
or       π2<π4+x2<3π4
       tan(π4+x2)=tan(π4+x2)        ( in second quadrant)
=tan{π(π4+x2)}
From Eq.(i),
y=tan1tan{π(π4+x2)}
=π(π4+x2)
=3π4x2
(principal value of tan1 x inπ2 to π2)
 dydx=12

Question 7

If f(x) = |x|, then f’(x), where x 0 is equal to

A. 1
B. 0
C. 1
D. |x|x

SOLUTION

Solution : D

f(x)={x,x0x,x<0f(x)=1,x>0,i.e,|x|x,x>01,x>0,i.e,|x|x,x>0=|x|x,x0

Question 8

If (1x2n)+(1y2n)=a(xnyn), then (1x2n1y2n)dydx is equal to

A. xn1yn1
B. yn1xn1
C. xy
D. 1

SOLUTION

Solution : A

Put xn=sin θ and yn=sin ϕthen,   (cosθ+cosϕ)=a(sinθsinϕ)2 cos(θ+ϕ2)cos(θϕ2)=2a cos(θ+ϕ2)sin(θϕ2)cot(θϕ2)=a(θϕ2)=cot1aθϕ=2cot1aor           sin1xnsin1yn=2 cot1aDifferentiating both sides,we havenxn1(1x2n)nyn1(1y2n)dydx=0           (1x2n1y2n)dydx=xn1yn1

Question 9

If d2xdy2(dydx)3+d2ydx2=k, then k is equal to

A. 0
B. 1
C. 2
D. None of these

SOLUTION

Solution : A

dydx=(dxdy)1d2ydx2=(dxdy)2{ddx(dxdy)}d2ydx2=(dxdy)2{ddy(dxdy)dydx}d2ydx2=(dydx)2{d2xdy2.dydx}d2ydx2=(dydx)3d2xdy2d2ydx2+(dydx)3d2xdy2=0

Question 10

If y=(1+x)(1+x2)(1+x4)(1+x2n) then dydx at x = 0 is

A. 0
B. -1
C. 1
D. None of these

SOLUTION

Solution : C

Since,  y=(1+x)(1+x2)(1+x4)(1+x2n),(1x)y=(1x2)(1+x2)(1+x4)(1+x2n)=(1x4)(1+x4)(1+x2n+1)y=1x2n+1(1x)dydx=(1x)(2n+1.x2n)(1x2n+1)(1)(1x)2dydxx=0=(1)(0)(1)(1)(1)2=1