Free Inverse Trigonometric Functions 03 Practice Test - 12th Grade - Commerce 

Question 1

If x=sin(2tan12),y=sin(12tan143) then

A. x = 1 – y
B. x2=1y
C. x2=1+y
D. y2=1x

SOLUTION

Solution : D

Let tan12=αx=sin2α=45y=sin(β2)=1cosβ2=1352=15
 

Question 2

sin1|cosx|cos1|sinx|=a has at least one solution if a

A. 0
B. [0,π2]
C. [π2,3π2]
D. (0,π)

SOLUTION

Solution : A

sin1|cosx|cos1|sinx|=π2cos1|cosx|π2+sin1|sinx|=asin1|sinx|cos1|cosx|=aa=0x

Question 3

sin1(sin10)=

A. 10
B. 3π10
C. π+6
D. 2π6

SOLUTION

Solution : B

3π<10<3π+π210 rad Q3π2<3π10<03π10Q4Also sin(3π10)=sin10Hence sin1(sin10)=sin1sin(3π10)=3π10

Question 4

cos1x=tan11x2x, then:
 

A. XR
B. x1,x0
C. 0<x1
D. None of these

SOLUTION

Solution : C

Putting θ=cos1x in R.H.S., we have   
R.H.S =tan11x2x=tan11cos2θcosθ(0θπ)=tan1sinθcosθ=tan1tanθ=θ=cos1x when π2<θ<π2
i.e., when 0θ<π2
i.e., when 0<cosθ1 i.e., 0<x1

Question 5

The value of x for which sin(cot1(1+x))=cos(tan1x) is:

A. 12
B. 1
C. 0
D. 12   

SOLUTION

Solution : D

sin(cot1(1+x))=cos(tan1x)cot1(1+x)=[π2±tan1x]π2tan1(1+x)=π2±tan1x1+x=±x
x=12 Which, on verification, satisfies the equation.

Question 6

If θ=tan1d1+a1a2+tan1d1+a2a3++tan1d1+an1an, where a1,a2,a3,an  are in A.P. with common difference d, then tanθ=

A. (n1)d1+a1an
B. (n1)da1+an
C. ana1an+a1
D. nd1+a1an

SOLUTION

Solution : A

θ=tan1a2a11+a1a2+tan1a3a21+a2a3++tan1anan11+an1an
=(tan1a2tan1a1)+(tan1a3tan1a2)++tan1anan11+an1an++(tan1antan1an1)
=tan1antan1a1
=tan1ana11+a1an=tan1(n1)d1+a1an
tanθ=(n1)d1+a1an

Question 7

cos[cos1(17)+sin1(17)]=

A. 13
B. 0
C. 13
D. 49

SOLUTION

Solution : B

cos{cos1(17)+sin1(17)}=cosπ2=0

Question 8

If cos1p+cos11p+cos11q=3π4, then the value of q is

A. 1
B. 12
C. 13
D. 12

SOLUTION

Solution : D

Let α=cos1p:β=cos11p
and γ=cos11q
or
cos α=p:cos β=1p
and cos γ=1q.
Therefore sin α=1p,sin β=p and sin γ=q.
The given equation may be written as α+β+γ=3π4
or, α+β=3π4γ 
or, cos(α+β)=cos(3π4γ)
cos α cos βsin α sin β =  cos{π(π4+γ)}=cos(π4+γ)
p1p1pp            =(121q12.q)
0=1qq1q=qq=12

Question 9

cot1[(cosα)12]tan1[(cosα)12]=x, then sinx=

A. tan2(α2)
B. cot2(α2)
C. tan α
D. cot(α2)

SOLUTION

Solution : A

tan1[1cosα]tan1[cosα]=x
tan11cosαcosα1+cosαcosα=xtan x=1cosα2cosα
sinx=1cosα1+cosα=2sin2α22cos2α2=tan2(α2).

Question 10

If tan1(x)+tan1(y)+tan1(z)=π, then 1xy+1yz+1zx=

A. 0
B. 1
C. 1xyz
D. xyz

SOLUTION

Solution : B

tan1(x)+tan1(y)+tan1(z)=π
tan1x+tan1y=πtan1z
x+y1xy=zx+y=z+xyz
x+y+z=xyz
Dividing by xyz, we get
1yz+1xz+1xy=1.
Note: Students should remember this question as a formula.