In the circuit shown in the figure, the value of node voltage 𝑉

In the circuit shown in the figure, the value of node voltage 𝑉
|

In the circuit shown in the figure, the value of node voltage 𝑉2 is

A. 22 + j2 V

B. 2 + j 22 V

C. 22 – j 2 V

D. 2 – j 22 V

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Since there is a voltage source present between the two nodes, the concept of supernode will be applied.

By KCL, using supernode at Node (1) and (2), we can write:

\(4 = \frac{{{V_1}}}{{ - j3}} + \frac{{{V_2}}}{6} + \frac{{{V_2}}}{{j6}}\)

\(4 = \frac{{j2{V_1} + {V_2} - j{V_2}}}{6}\)

24 = j2 V1 + (1 - j) V2      ---(1)

By KVL, V1 – V2 = 10 ∠0°

V1 = V2 + 10       ---(2)

Substituting (2) in (1), we get:

24 = j2 (V2 + 10) + (1 - j) V2

24 = j2 V2 + j20 + (1 - j) V2

24 = j20 + (1 + j) V2

\({V_2} = \frac{{24 + j20}}{{1 + j}} = \frac{{24 - j20}}{{\left( {1 + j} \right)}} \times \frac{{\left( {1 - j} \right)}}{{\left( {1 - j} \right)}}\)

\({V_2} = \frac{{\left( {24 - j20} \right)}}{2} \times \left( {1 - j} \right)\)

\({V_2} = \frac{{24 - j20 - j24 - 20}}{2}\)

\({V_2} = \frac{{4 - j44}}{2}\)

V2 = 2 – j22 V