The maximum stress intensity at the base of square column of area

The maximum stress intensity at the base of square column of area
|

The maximum stress intensity at the base of square column of area ‘A’ and side ‘b’ subjected to load W’ at an eccentricity ‘e’ equals to

A. <span class="math-tex">\(\frac{W}{A}\left( {1 + \frac{{2e}}{b}} \right)\)</span>

B. <span class="math-tex">\(\frac{W}{A}\left( {1 - \frac{{4e}}{b}} \right)\)</span>

C. <span class="math-tex">\(\frac{W}{A}\left( {1 + \frac{{6e}}{b}} \right)\)</span>

D. <span class="math-tex">\(\frac{W}{A}\left( {1 + \frac{{8e}}{b}} \right)\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: C

SOLUTION

Concept:

Bending equation 

\(\frac{M}{I} = \frac{\sigma }{y} = \frac{E}{R}\)

M = bending moment, I = moment of inertia of the area of cross-section, σ  = bending stress, y = distance of extreme fibre from the neutral axis, E = young’s modulus for the material of the beam, R = radius of curvature

Calculation:

Given:

Side of square column = b, Load at an eccentricity (e) = W, Area = b2

The column will be under compression and bending.

Point B is heavily stressed.

Now, stresses at B,

We know,

\(\frac{M}{I} = \frac{\sigma }{y}\)

\(I = \frac{{{b^4}}}{{12}},\;y = \frac{b}{2}\)

The maximum stress intensity at the base of the square column,

σ = σcompr. + σbending  

\(\sigma = \frac{W}{A} + \frac{{W \times e \times \frac{b}{2}}}{{\frac{{{b^4}}}{{12}}}} \Rightarrow \frac{W}{A} + \frac{{W \times e}}{{{b^2} \times \left( {\frac{b}{6}} \right)}} = \frac{W}{A} + \frac{{W \times e \times 6}}{{A \times b}}\)

\( \sigma= \;\frac{W}{A}\left( {1 + \frac{{6e}}{b}} \right)\)