Free Application of Derivatives 03 Practice Test - 12th Grade - Commerce 

Question 1

f(x) = xloge x, x  1, is decreasing in interval

A. (0, e)
B. (1, e)
C. (e, )
D. R

SOLUTION

Solution : A

f'(x) = logex.1x.1x(logex)2
=(logex1)(logex)2<0
It is decreasing at (0, e) – {1}


Question 2

If f"(x) > 0  x ϵ R then for any two real numbers x1 and x2 , (x1  x2)

A. f(x1 + x22) > f(x1) + f(x2)2
B. f(x1 + x22) < f(x1) + f(x2)2
C. f(x1 + x22) > f(x1) + f(x2)2
D. f(x1 + x22) < f(x1) + f(x2)2

SOLUTION

Solution : B

Let A = (x1,f(x1)) and B = (x2,f(x2)) be any two points on the graph of y = f(x).
 Since f"(x) > 0, in the graph of the function tangent will always lie below the curve. Hence chord AB will lie completely above the graph of y = f(x).
 Hence f(x1)+f(x2)2>f(x1+x22)

Question 3

f(x) = x2  4|x| and g(x) = {min1f(t) : 6  t  x},   x ϵ [6, 0]max1f(t) : 0  t  x},   x ϵ [0, 6], than g(x)

A. Exactly one point of local minima
B. Exactly one point of local maxima
C. No point of local maxima but exactly one point of local minima
D. Neither a point of local maxima nor minima

SOLUTION

Solution : D

Bold line represents the graph of y = g(x) clearly g(x) has neither a point of local maxima nor a point of local minima.

Question 4

Let S be the set of real values of parameter λ  for which the equation f(x) = 2x3  3(2+λ)x2 + 12λ x has exactly one local maximum and exactly one local minimum. Then S is a subset of

A. (4, )
B. (3, 3)
C. (3, )
D. R

SOLUTION

Solution : C

f(x) = 2x3  3(2+λ)x2 + 12λ x f(x) = 6x2  6(2+λ)x + 12λf(x) = 0  x = 2, λ
If f(x) has exactly one local maximum and exactly one local minimum, then λ  2.

Question 5

The tangent to the curve x =  acos2θcosθ,y=acos2θsinθ at the point corresponding to θ=π6 is

A. parallel to the x-axis
B. parallel to the y-axis
C. parallel to line y = x    
D. 3X-4Y+2=0

SOLUTION

Solution : A

dxdθ = a cos 2θsin θ + a cos θ sin θcos 2θ= a(cos 2θ sin θ + cos θ sin 2 θ)cos 2θ = a sin 3θcos 2θ= dydθ = a cos 2θ cos θ  a sin θ sin 2θcos 2θ = a cos 3θcos 2θ
Hence dydx=cot3θdydx|θ=π6 = 0
So the tangent to the curve at θ=π6 is parallel to the x-axis.

Question 6

The distance moved by the particle in time t is given by x=t312t2+6t+8. At the instant when its acceleration is zero, then the velocity is

A.

42

B.

-42

C.

48

D.

-48

SOLUTION

Solution : B

We have,
x=t312t2+6t+8
dxdt=3t224t+6andd2xdt2=6t24
Now, Acceleration =0
d2xdt2=06t24=0t=4
Att=4, we have
Velocity =(dxdt)r4=3×4224×4+6=42.

Hence (b) is the correct answer.

 

Question 7

For what values of x is the rate of increase of x35x2+5x+8 is twice rate of increase of x ?

A.

3,13

B.

3,13

C.

3,13

D. 3,13

SOLUTION

Solution : D

Let y=x35x2+5x+8. Then,
dydx=(3x210x+5)dxdtWhendydt=2dxdt,wehave(3x210x+5)dxdt=2dxdt3x210x+3=0(3x1)(x3)=0x=3,13.

Hence (d) is the correct answer.

Question 8

The  two curves x33xy2+2=0 and 3x2yy32=0

A.

Cut at right angles

B.

Touch each other

C.

Cut at an angle π/3

D.

Cut at an angle π/4

SOLUTION

Solution : A

x33xy2+2=0...(1)3x2yy32=0...(2)
On differentiating equations (1) and (2) w.r.t x, we obtain
(dydx)c1=x2y22xy and (dydx)c2=2xyx2y2
Since m1.m2=1.Therefore the two curves cut at right angles.
Hence (a) is the correct answer.

Question 9

Number of possible tangents to the curve y=cos(x+y),3πx3π  that are parallel to the line x+2y = 0, is

A.

1

B.

2

C.

3

D.

4

SOLUTION

Solution : C

We have, y = cos (x + y)
dydx=sin(x+y)(1+dydx)
Since, the tangents are parallel to the line x + 2y = 0
12=sin(x+y)(112)sin(x+y)=1x+y=π2,5π2,3π21y1.
Hence (c) is the correct answer.

Question 10

If the tangent to the curve x+y=a at any point on it cuts the axes OX and OY at P and Q respectively, then OP +OQ is

A.

a2

B.

a

C.

2a

D.

4a

SOLUTION

Solution : B

x+y=a.....(i)
12x+12ydydx=0

dydx=yx
Equation of tangent at (x1y1)isyy1=y1x1(xx1)
xx1+yy1=a;op=ax1,OQ=ay1OP+OQ=a