Free Definite Integrals and Areas 03 Practice Test - 12th Grade - Commerce 

Question 1

Find the integral 0exdx.

A. 0
B. 1
C. 2
D.

SOLUTION

Solution : B

We can see that the given integral is an improper integral as one of its limits is not finite.  
In such cases where we have to deal with infinity as the limits of definite integral, we’ll  change the limit which is not finite to a variable and then put the limits.
0exdx.=lim aa0exdx
=lim a(ex)a0
=lim a(ea(e0))
=0(1)
=1

Question 2

Area enclosed by curve y39y+x=0 and Y - axis is -

A. 92
B. 9
C. 812
D. 81

SOLUTION

Solution : C

The given equation of curve can be written as x=f(y)=9yy3. Now to calculate the area we need to find the boundaries of this curve i.e ordinates or the point where this curve is meeting Y - axis.
f(y)=y(9y2) 
f(y)=y.(3+y)(3y)
So, the points where f(y) is meeting y - axis are y = -3,  y = 0 & y = 3. 
Important thing to note here is that the function is changing its signs. 
I.e. from y = -3 to y = 0  f(y) is negative.
& from y = 0 to y = 3  f(y) is positive.
Since, the function in negative in the interval (-3, 0 ) we’ll take absolute value of it. Because we are interested in the area enclosed and not the algebraic sum of area.
Let the area enclosed be A.
A=03|f(y)|dy+30f(y)dyA=03|9yy3|dy+30(9yy3)dyA=03(9yy3)dy+309yy3dyA=[9y22y44]03+[9y22y44]30A=[00812+814]+[812814]A=81812A=812

Question 3

10π0|sin x|dx is

A. 20
B. 8
C. 10
D. 18

SOLUTION

Solution : A

10π0|sin x|dx=10π0|sin x|dx
 |sin x| is positive in I & II quadrant and has period π
=10π0 sin x dx=10[cos x]x0=20

Question 4

20[x2]dx is (where [.] is greastest integral function

A. 22
B. 2+2
C. 21
D. 23+5

SOLUTION

Solution : D

20[x2]dx
=10[x2]dx+20[x2]dx+32[x2]dx+23[x2]dx
=100dx+201dx+322dx+233dx
=21+2322+633
=532

 

Question 5

π20 log(tan x+cot x)dx=

A. π log 2
B. π log 2
C. π2 log 2
D. π2 log 2

SOLUTION

Solution : A

π20 log(tan x+cot x)dx=π20 log[2sin 2x]dx
=π20(log2log sin 2x)dx=log 2(π2)+(π2)log 2=π log 2

Question 6

10 x71x4dx is equal to

A. 1
B. 13
C. 23
D. π3

SOLUTION

Solution : B

I=10x71x4dx=10x6x dx1x4
Put x2=sin θ2x dx=cos θ dθ
I=12 π20sin3 θ. cos θ dθcos θ=12 120 sin3 θ dθ
=12T2T(12)2.T(12)=T(12)4.32.12.T(12)=13

Question 7

Let f be a positive function. Let
I1=k1k xf{x(1x)}dx,  I2=k1kf{x(1x)}dx
when 2k1>0. Then I1I2 is               [IIT 1997 Cancelled]

A.

2

B.

k

C.

12

D.

1

SOLUTION

Solution : C

I1=k1k xf{x(1x)}dx
=k1k(1k+kx)f[(1k+kx){1(1k+kx)}]dx
=k1k(1x)f{x(1x)}dx
=k1kf{x(1x)}dxk1kxf{x(1x)}dx=I2I1
2I1=I2I1I2=12

Question 8

If I is the greatest of the definite integrals
I1=10excos2x dx,  I2=10ex2cos2 x dx
I3=10ex2dx, I4=10ex22dx, then

A.

I=I1

B.

I=I2

C.

I=I3

D.

I=I4

SOLUTION

Solution : D

For 0 < x < 1, we have 12x2<x2<x
x2>x, so that ex2<ex,
Hence     10ex2 cos2 x dx>10excos2x dx
Also cos2 x 1
Therefore 10ex2cos2 x dx10ex2dx<10ex22dx=I4
Hence I4 is the greatest integral

Question 9

Area bounded by parabola y2=x and straight line 2y = x is

A. 43
B. 1
C.

23

D.

13

SOLUTION

Solution : A

y2=x and 2y=xy2=2yy=0,2
 Required area=20(y22y)dy=(y33y2)20=43sq.unit

Question 10

The correct evaluation of π0|sin4 x|dx is  [MP PET 1993]

A. 8π3
B. 2π3
C. 4π3
D. 3π8

SOLUTION

Solution : D

π0|sin4 x|dx=2π20 sin4 x dx
Applying gamma function,
2π20sin4 x dx=2T(52).T(12)2.T(62)=3π8