एक वृत्ताकार लॉग से सबसे मजबूत आयताकार बीम कट के लिए चौड़ाई और गह

एक वृत्ताकार लॉग से सबसे मजबूत आयताकार बीम कट के लिए चौड़ाई और गह
| एक वृत्ताकार लॉग से सबसे मजबूत आयताकार बीम कट के लिए चौड़ाई और गहराई का अनुपात _______ है।

A. 0.303

B. 0.404

C. 0.505

D. 0.707

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

व्यास 'D' के दिए गए टाइमर अनुभाग के लिए:

माना कि आयाम 'b × d' के आयताकार अनुभाग को काट देना है:

यदि अनुभागीय मापांक अधिकतम है तो बीम सबसे मजबूत है।

\({\rm{z}} = \frac{{\rm{I}}}{{{{\rm{y}}_{{\rm{max}}}}}} = \frac{{\frac{{{\rm{b}}{{\rm{d}}^3}}}{{12}}}}{{\frac{{\rm{d}}}{2}}} = \frac{{{\rm{b}}{{\rm{d}}^2}}}{{\rm{b}}}\)

\(\therefore {\rm{z}} = \frac{{{\rm{b}}{{\rm{d}}^2}}}{6}\)

\({\rm{z}} = \frac{{{\rm{b}}\left( {{{\rm{D}}^2} - {{\rm{b}}^2}} \right)}}{6} = \frac{{{\rm{b}}{{\rm{D}}^2} - {{\rm{b}}^3}}}{6}\)

अधिकतम अनुभागीय मापांक के लिए

\(\frac{{dz}}{{db}} = 0\;{\rm{or\;}}\frac{{{\rm{dz}}}}{{{\rm{dd}}}} = 0\)

हम आसान गणना के लिए चौड़ाई के संबंध में अनुभागीय मापांक को अवकलित करते हैं

\(\Rightarrow \frac{{\rm{d}}}{{{\rm{db}}}}\left( {\frac{{{\rm{d}}{{\rm{D}}^2} - {{\rm{b}}^3}}}{6}} \right) = 0\)

⇒ डी 2 - 3 बी 2 = 0

\(\Rightarrow {\rm{b}} = \frac{{\rm{D}}}{{\sqrt 3 }}\)

\({\rm{d}} = \sqrt {{{\rm{D}}^2} - {{\rm{b}}^2}} = \sqrt {{{\rm{D}}^2} - \frac{{{{\rm{D}}^2}}}{3}} = \sqrt {\frac{2}{3}} \times {\rm{D}}\)

इस प्रकार, एक आयताकार बीम के लिए अनुप्रस्थ-काट क्षेत्र निम्न द्वारा दिया जाता है

\({A} = {\rm{b}} \times {\rm{d}} = \frac{{\rm{D}}}{{\sqrt 3 }} \times \sqrt {\frac{2}{3}} \times {\rm{D}} = \frac{{\sqrt 2 {{\rm{D}}^2}}}{3}\)

\(\therefore {\rm{A}} = \frac{{\sqrt 2 }}{3}{{\rm{D}}^2}\)

\(\therefore \frac{{\rm{b}}}{{\rm{d}}} = \frac{1}{{\sqrt 2 }} = 0.707\)