The Magnetic field dB of an element dl carries a steady current a

The Magnetic field dB of an element dl carries a steady current a
| The Magnetic field dB of an element dl carries a steady current at a distance r of point P from current element is

A. <span class="math-tex">\(\overrightarrow {dB} = \frac{{{\mu _o}}}{{4\pi }}i\left( {\frac{{\overrightarrow {dl} \times \vec r}}{r}} \right)\)</span>

B. <span class="math-tex">\(\overrightarrow {dB} = \frac{{{\mu _o}}}{{4\pi }}{i^2}\left( {\frac{{\overrightarrow {dl} \times \vec r}}{r}} \right)\)</span>

C. <span class="math-tex">\(\overrightarrow {dB} = \frac{{{\mu _o}}}{{4\pi }}{i^2}\left( {\frac{{\overrightarrow {dl} \times \vec r}}{{{r^2}}}} \right)\)</span>

D. <span class="math-tex">\(\overrightarrow {dB} = \frac{{{\mu _o}}}{{4\pi }}i\left( {\frac{{\overrightarrow {dl} \times \vec r}}{{{r^3}}}} \right)\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

CONCEPT:

Biot-Savart's Law: 

  • Biot-Savart’s law is used to determine the magnetic field at any point due to a current-carrying conductor.
  • This law is although for infinitesimally small conductor yet it can be used for long conductors.

EXPLANATION:

 

  • According to Biot-Savart Law, the magnetic field at point ‘ P ’ due to the current element \(i\overrightarrow {dl} \) is given by the expression,

\(\overrightarrow {dB} = \frac{{{\mu _o}}}{{4\pi }}i\left( {\frac{{\overrightarrow {dl} \times \vec r}}{{{r^3}}}} \right)\)
Where, μo = Absolute permeability of air or vacuum, \(i\overrightarrow {dl} \) = Current element and r = distance