The mathematical model of an analogous electrical system for the

The mathematical model of an analogous electrical system for the
|

The mathematical model of an analogous electrical system for the following mechanical system using the force-current analogy is (i – current, v – voltage, L – Inductance, C – Capacitance)

A. <span class="math-tex">\(\frac{1}{{{C_{K1}}}}\smallint \left( {{i_y} - {i_x}} \right)dt = {L_{M2}}\frac{{d{i_x}}}{{dt}} + \frac{1}{{{C_{K2}}}}\smallint {i_x}dt,\;{v_F}\left( t \right) = {L_{M1}}\frac{{d{i_y}}}{{dt}} + \frac{1}{{{C_{K3}}}}\smallint {i_y}dt + \frac{1}{{{C_{K1}}}}\smallint \left( {{i_y} - {i_x}} \right)dt\)</span>

B. <span class="math-tex">\(\frac{1}{{{L_{K1}}}}\smallint \left( {{i_y} - {i_x}} \right)dt = {L_{M2}}\frac{{d{i_x}}}{{dt}} + \frac{1}{{{L_{K2}}}}\smallint {i_x}dt,\;{v_F}\left( t \right) = {L_{M1}}\frac{{d{i_y}}}{{dt}} + \frac{1}{{{L_{K3}}}}\smallint {i_y}dt + \frac{1}{{{L_{K1}}}}\smallint \left( {{i_y} - {i_x}} \right)dt\)</span>

C. <span class="math-tex">\(\frac{1}{{{C_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt = {L_{M2}}\frac{{d{v_x}}}{{dt}} + \frac{1}{{{C_{K2}}}}\smallint {v_x}dt,\;{i_F}\left( t \right) = {L_{M1}}\frac{{d{v_y}}}{{dt}} + \frac{1}{{{C_{K3}}}}\smallint {v_y}dt + \frac{1}{{{C_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt\)</span>

D. <span class="math-tex">\(\frac{1}{{{L_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt = {C_{M2}}\frac{{d{v_x}}}{{dt}} + \frac{1}{{{L_{K2}}}}\smallint {v_x}dt,\;{i_F}\left( t \right) = {C_{M1}}\frac{{d{v_y}}}{{dt}} + \frac{1}{{{L_{K3}}}}\smallint {v_y}dt + \frac{1}{{{L_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Mathematical model:

A mathematical model of a dynamic system is defined as a set of differential equations that represent the dynamics of the system accurately.

A mathematical model is not unique to a given system.

A system may be represented in many different ways. Therefore it may have many mathematical models 

Analysis:

The given model is

The differential equations are

\(F\left( t \right) = {M_1}\frac{{dy\left( t \right)}}{{dt}} + {K_1}\smallint \left( {y\left( t \right) - x\left( t \right)} \right)dt + {K_3}\smallint y\left( t \right)dt \ldots \ldots \ldots .\;\left( 1 \right)\)

\({M_2}\frac{{dx\left( t \right)}}{{dt}} + {K_2}\smallint x\left( t \right)dt + {K_1}\smallint \left( {x\left( t \right) - y\left( t \right)} \right)dt = 0\)

\({M_2}\frac{{dx\left( t \right)}}{{dt}} + {K_2}\smallint x\left( t \right)dt = {K_1}\smallint \left( {y\left( t \right) - x\left( t \right)} \right)dt \ldots \ldots \ldots .\left( 2 \right)\)

The mathematical model for various systems is given in the below tabular form.

Mechanical translational system

Mechanical rotational system

Current Analogous system

Voltage Analogous system

F (Force)

T (Torque)

I (current)

V (Voltage)

M (Mass)

J (Inertia)

C (Capacitance)

L (Inductance)

B (Friction constant)

B

1/R

R (Resistance)

K (Spring constant)

K

1/L

1/C

x(t) (Velocity)

ω 

V

I

 

Force- Current Analogy:

Compare the elements in the above table

Substitute them in the differential equations (1) and (2).

\({i_F}\left( t \right) = {C_{M1}}\frac{{d{v_y}}}{{dt}} + \frac{1}{{{L_{K3}}}}\smallint {v_y}dt + \frac{1}{{{L_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt\)

\(\frac{1}{{{L_{K1}}}}\smallint \left( {{v_y} - {v_x}} \right)dt = {C_{M2}}\frac{{d{v_x}}}{{dt}} + \frac{1}{{{L_{K2}}}}\smallint {v_x}dt\;\)