The circuit shown represents

The circuit shown represents
|

The circuit shown represents

A. a bandpass filter

B. a voltage controlled oscillator

C. an amplitude modulator

D. a monostable multivibrator

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Analysis:

Given: 

V+ = VA and V- = VZ

When Vi acts as a trigger to change the output state, the capacitor C1 changes until the output state returns to the original state.

Initially, the capacitor is uncharged.

Let V0 = + Vsat

Now, the voltage across capacitor is given by:

Vl(t) = Vf + (Vi - Vf) e-t / τ

With Vi = 0 V and Vf = +Vsat, we can write:

\({V_c}\left( t \right) = {V_{sat}} + \left( {0 - {V_{sat}}} \right){e^{ - t/{R_1}{C_1}}}\) 

\({V_c}\left( t \right) = {V_{sat}}\left( {1 - {e^{ - \frac{t}{{{R_1}{C_1}}}}}} \right)\) 

\({V_c}\left( t \right) = {V_{sat}} - {V_{sat}}{e^{ - t/{R_1}{C_1}}}\) 

\({V_{sat}} - {V_c}\left( t \right) = {V_{sat}}{e^{ - t/{R_1}{C_1}}}\)    ---(1)

From the given figure:

V0 – Vc(t) – VA = 0 and V0 = Vsat

Vsat – Vc(t) – VA = 0

Vsat – Vc(t) = VA  ---(2)

From (1) & (2), we get:

\({V_A} = {V_{sat}}\;{e^{ - t/{R_1}{C_1}}}\) 

Let the trigger input applied, be in the triangular, i.e.

With \(\;{V_Z} = \frac{{d{V_i}}}{{dt}}:\)

Now, 

Hence a pulse of short duration is generated with the help of a trigger input.

∴  It is a monostable multivibrator.