The VSWR is given by:

The VSWR is given by:
| The VSWR is given by:

A. <span class="math-tex">\(\frac{{{V_{max}}}}{{{V_{min}}}}\)</span>

B. <span class="math-tex">\(\frac{{{V_r}}}{{{V_i}}}\)</span>

C. <span class="math-tex">\(\frac{{{V_i}}}{{{V_r}}}\)</span>

D. <span class="math-tex">\(\frac{{{V_{min}}}}{{{V_{max}}}}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

The voltage standing wave ratio is defined as the ratio of the maximum voltage (or current) to the minimum voltage (or current).

\(VSWR = \frac{{{V_{max}}}}{{{V_{min}}}} = \frac{{{I_{max}}}}{{{I_{min}}}}\)

Important Derivation:

The general expression of the voltage across a transmission line is given by:

\(V\left( l \right) = {V^ + }{e^{j\beta l}}\left( {1 + \left| {{{\rm{\Gamma }}_{\rm{L}}}} \right|{e^{ - j2\beta z}}} \right)\)

l = distance from the load

β = Phase constant

ΓL = Reflection coefficient at the load calculated as:

\({{\rm{\Gamma }}_L} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}\)     -  -  - (1)

The maximum and minimum voltage is given by:

 \({V_{max}} = \left| {{V^ + }} \right|\;\left( {1 + \left| {{{\rm{\Gamma }}_{\rm{L}}}} \right|} \right)\)

\({V_{min}} = \left| {{V^ + }} \right|\;\left( {1 - \left| {{{\rm{\Gamma }}_{\rm{L}}}} \right|} \right)\)

\(VSWR = \frac{{{V_{max}}}}{{{V_{min}}}} = \frac{{1 + {{\rm{\Gamma }}_L}}}{{1 + {{\rm{\Gamma }}_L}}}\)